Linear independence in linear systems on elliptic curves

نویسندگان

چکیده

Let $E$ be an elliptic curve, with identity $O$, and let $C$ a cyclic subgroup of odd order $N$, over algebraically closed field $k$ $\operatorname{char} k \nmid N$. For $P \in C$, $s_P$ rational function divisor $N \cdot P - N O$. We ask whether the $N$ functions are linearly independent. generic $(E,C)$, we prove that answer is yes. bound number exceptional $(E,C)$ when prime by using geometry universal generalized curve $X_1(N)$. The problem can recast in terms sections arbitrary degree line bundle on $E$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Systems on Tropical Curves

A tropical curve Γ is a metric graph with possibly unbounded edges, and tropical rational functions are continuous piecewise linear functions with integer slopes. We define the complete linear system |D| of a divisor D on a tropical curve Γ analogously to the classical counterpart. We investigate the structure of |D| as a cell complex and show that linear systems are quotients of tropical modul...

متن کامل

Computing Canonical Heights on Elliptic Curves in Quasi-linear Time

We introduce an algorithm that can be used to compute the canonical height of a point on an elliptic curve over the rationals in quasi-linear time. As in most previous algorithms, we decompose the difference between the canonical and the naive height into an archimedean and a non-archimedean term. Our main contribution is an algorithm for the computation of the non-archimedean term that require...

متن کامل

Linear equivalence between elliptic curves in Weierstrass and Hesse form

Elliptic curves in Hesse form admit more suitable arithmetic than ones in Weierstrass form. But elliptic curve cryptosystems usually use Weierstrass form. It is known that both those forms are birationally equivalent. Birational equivalence is relatively hard to compute. We prove that elliptic curves in Hesse form and in Weierstrass form are linearly equivalent over initial field or its small e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2021

ISSN: ['0010-2571', '1420-8946']

DOI: https://doi.org/10.4171/cmh/511